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Phenomenological theory of the metal-insulator transition 
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Slovakia 

Received 16 May 1995 

Abstract  We show that the transition of a system from the metallic to the insulating regime is 
occompanied by a change of the density of lhe Lyapunov exponents of lhe transfer matrix of the 
system. This enables us to construct the distribution of the Lyapunov exponents P ( r ) .  It hac a 
form P ( z )  exp(-,W). where Hamiltonian H contains the one-particle potential V ( z )  and the 
interaction term u ( z ; .  zj).  I n  the metallic limit, this distribution has a form proposed previously 
by random matrix theory: V ( z )  is quadrmic and u(z j ,  2,) converges to the interacung potential 
found QmViOuSly by Beenakker and Rajaei. Close to the critical point of the metal-insulator 
transition. both V ( z )  and ~ ( z j .  z j )  become dimension-dependent. In pmicular. V ( z )  - zr 
(d > 2)  at lhe critical point. We also discuss the applicability of the distnbution P ( z )  and of 
the o n e - p m e t e r  lheory of MIT to the description of the insuhnng regime. 

1. Introduction 

Recent theoretical [l-31 and numerical 14-71 studies indicate that a complete theory of 
the disorder-induced metal-insulator transition (MIT) has to deal with the statistics of 
the conductance g in all three regimes: metallic, critical and localized. On the other 
hand, the most successful theories of MIT, the one-parametrical scaling theory [8] and 
the finite-size scaling hypothesis (FSSH) 191, deal only with the most probable value of 
the conductance. and of the first Lyapunov exponent (LE), respectively, and consequently 
provide no information about the statistics of the conductance. Our present knowledge of the 
form of the distribution P ( g )  at the critical point is based mostly on numerical studies of the 
different models [6,7,1&12], and on analytical studies in dimensions slightly larger than 2 
(the critical dimension of MIT) [2,3]. Results of these studies are rather contradictory. 
Their understanding needs the construction of a general theory, which could enable us to 
find the form of P ( g )  at the critical point, and their dependence on the dimension of the 
system. 

The conductance g of a disordered sample of the form Ld-' x L, can be expressed 
through the Lyapunov exponents zi of the corresponding transfer matrix as [ 131 

In (I) ,  N = L"-' is the number of channels, Ai are eigenvalues of the matrix 

A = [TtT + (TIT)-' - 2]/4 (2) 
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T is transfer matrix, and exp(z,) are eigenvalues of matrix TIT. Thus, complete information 
about the probability distribution P ( z )  of the Lyapunov exponents also provides a complete 
description of the statistics of the conductance. 

For the metallic regime, the joint probability distribution P ( z )  of the LE of the transfer 
matrix has been proposed on the basis of random matrix theory [I41 (RMT) [15-20]. Our 
aim in this paper is to propose a more general form of distribution P ( z ) ,  applicable not only 
to a description of the metallic regime, but also to the critical and even localized regimes. 

The paper is organized as follows. In the remaining part of this section we review the 
basic ideas of FSSH and results for the distribution P ( z )  in the metallic regime. In section 2 
we generalize P ( z )  to the critical and localized regimes: we introduce the density of LE, 
derive the one-particle potential V ( z ) .  propose the more general form of the interacting 
potential u(z i ,  z j ) ,  and introduce the generalized ‘temperature’ p.  In section 3 we apply 
V ( z )  to derive the spectrum of the LE in all three regimes in the QID limit. The form of 
the spectrum in the insulating regime, together with results for variations of the LE, indicate 
that the theory of the MIT is at least two-parametrical above the critical point. Section 4 
brings the generalization of the results of sections 2 and 3 to the d-dimensional systems 
(d z 2). In section 5 we analyse cubic samples. We discuss the differences in the spectrum 
of the LE and in the variances of the LE caused by the geometry of sample. The comparison 
of our results with data from numerical simulations [S-7,281 is discussed throughout the 
paper. A summary of the presented results is given in section 6. 

I ,  I .  Finife-size scaling hypothesis 

In the FSSH [9], the parameters of the MIT are calculated from the system width L and 
disorder W dependence of the smallest positive LE z1 of the QID sample L x L x L,. It 
was supposed (and verified numerically) that the L and W dependence of the most probable 
value il of the first LE can be expressed as 

In (3), ((W) is the scaling parameter [9]. It diverges in the neighbourhood of the critical 
point W = W, as 

In the limit x >> 1 (i.e. far from the critical point), f ( x )  - 2x (- 2 / x )  for the localized 
(metallic) regime, respectively, At the critical point 

Both the scaling parameter 5 and scaling function f ( x )  play a crucial role in the 
generalization of the distribution P ( z )  to the critical region. 

1.2. Distribution of LE in the metallic regime 

Before looking for the form of P ( z )  in the neighbourhood of the critical point, let us 
follow the development achieved in recent years in the description of the metallic regime. 
Pichard [I61 supposed that the matrix A defined in (2) has the general properties of random 
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matrices. Consequently, the probability distribution of Lyapunov exponents (LE) zi has the 
form 

P N ( Z I ,  Z Z . .  .) = exp(-j3%) (6) 

where /3 = 1.2 and 4 for orthogonal, unitary and symplectic ensembles, respectively, and 
‘li is the Hamiltonian 

N N 

with the interacting potential 

u ( ~ i . 2 ~ )  = -1oglcoshii - c o s h ~ ~ I  (8) 

the one particle potentials 

1 
u(zi)=--logjsinh;,I (9) B 

and V(z).  While u(z) originates from the Jacobian of the transformation from variables A 
to z A, = (cosh zi - 1)/2, the form of the potential V(z) has to be found from the known 
density p(z )  of the LE [19,21,221. 

In the metal, p(z) is constant 1161. It corresponds to the quadratic potential 

and to the linear spectrum of LE, zi - i. The distribution P ( z )  with quadratic potential (10) 
has been used by Muttalib [27] to study of the spectrum of the LE in the metallic limit. 

The distribution (6) successfully explains the qualitative features of transport in the 
metallic regime (161. Its connection to the local maximum entropy ansatz (LMEA) [23] has 
been established in [24]. Recent developments, however, show that both potentials (8) and 
(9) need corrections: thus, Chalker and Macedo [25] proved that distribution (6) represents 
only the adiabatic limit of the LMEA. Moreover, Beenakker [19] found that distribution 
(6) does not give the correct value for the universal conductance fluctuations (UCF) in the 
Q1D limit. In order to reproduce the exact results. the potentials U and U in (7) should be 
modified. Beenakker and Rajaei [20] found that U (U) should be replaced by UBR ( I J S R ) ,  

respectively, where 

(11) 2 
UBU(Z, 9 ZJ ) = -1 2 log Icoshzj -coshzjl - $log/.$ - zj 1 

and 

(12) 
1 

UBR(Z~)  = -- log Ip sinhzil. 
28 

Although the relations (1 1) and (12) have been derived only for ,6 = 2, there are indications 
that they also hold for j3 = 1 , 4  [ZO]. They provide the starting point of our considerations. 
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2. Generalization of the probability distribution 

The success of RMT in the description of the metallic regime inspired us to look for the 
general distribution P ( z )  of the LE in the form of (6). 

Besides the explanation of the statistical properties of the LE in the critical regime, the 
distribution P (z) has to fulfill some requirements: (i) it has to describe the transition from 
the metallic to the localized regime when the disorder W crosses its critical value W,; (ii) in 
the metallic regime it has to reduce to the well known distribution found by Beenakker and 
Rajaei [ Z O ] ;  (iii) P ( z )  should depend on the dimension of the system in the neighbourhood 
of the critical point; and (iv) the theory has to explain the differences between the spectrum 
of the LE, as was found numerically for systems of different system shapes [6]. 

Our analysis starts from the numerical observation that the spectrum of the LE changes 
its form when the system undergoes the MIT [6,32]. Although this change concerns only 
the start of the spectrum, we believe that it represents the crucial feature of the MIT. 

Let us note here that the number of channels that are important for transport is 
proportional to L << N in the metallic limit, and is (< L at the critical point. Therefore, 
it is enough to consider only the N smallest LE for our purposes. Although N << N ,  we 
suppose that N is infinite in the limit of infinite volume of the considered sample. 

2.1. Density oflyapunot, exponents 

On the basis of results of numerical simulations we postulate that the MIT is accompanied in 
3D systems by a change of the z dependence of the density p(z)  of the Lyapunov exponents 
from the constant (in metal) IO the linear (at the critical point): 

z + 2 L , / <  w e wc 

P ( Z )  =2a3 x z W=W, d = 3  (13) { 2 - 2LJC w > w, . 

In (13), a3 = $(1/<f)(2L/LZ)’ and (l is a universal constant, defined in (5). It depends 
only on the dimension and symmetry of the problem. 

As is mentioned above, relation (13) concerns only the start of the spectrum. The 
remaining part of spectrum is linear in all three regimes. It contains only LE that are >> 1. 
The role of these LE in transport is negligible so that they can be integrated out in (6). 

Relation (13) underlines the role of the scaling parameter e(W): it determines not only 
the L and W dependence of the first LE, but also the spectrum of the LE. Owing to (4) ,  
relation (13) assures the continuous change of p(z )  from a constant in  the metal to the linear 
z dependence at the critical point. In the metallic regime, z; - 2i x eLL,/L2 < 2L,/5, 
and so p(z )  is almost constant, as it should be. Above the critical point, a gap is opened, 
z > 2 L / { .  

As is seen in figure 1, relation (13) is valid only in the limit of large system size, or for 
Q1D systems with L J L  >> 1. For small samples, deviations from (13) arise. It particularly 
concerns the localized regime, where, due to the fluctuations of the smallest LE, p ( z )  has 
an exponentially small tail in the gap z e 2L&. The non-zero values of p(z) in the gap 
are responsible for the anomalous properties of the conductance in the localized regime [6]. 
Nevertheless, in the limit L >> e(W) (strong localization), this tail does not influence our 
present considerations. 
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Figure 1. ( a )  Density of the LB p at the criucal 
poinr(cubic smples). Linevfirsgivep ~ O o . 1 0 6 z +  
0.086 ( L  = 12) and p 20.1262 - 0.0075 (L = 8). 
(h) p for cubes 12' and W = 32. Large Ructuations 
of p in the region of the gap represent the size 
effects. (c) p for the QlD system W = 32, 
L = 16, L,IL = 126. The full line is the l i n w  
fit p ir 0.1045 x (L - 17.65). Note the constan1 
2ui %0.10 io (13). 

) 

2.2. One-particle potential 

The connection between the potential V(z) and the density p(z) has been established by 
many authors 119, 21, 221. Here, we follow Muttalib's method 1271 based on a calcnlation 
of the most probable values ii of the LE. The last are given as a solution of the system of 
equations 

System (14) simplifies in the Q I D  limit L, >> L when all zi >> I .  Consequently, the 
interactingpotentialus(zi,zj) reduces to 4 log Icoshzi-coshzjl anditsderivativeis $(i-1). 
Using the relation 

which is valid in the Q1D limit. we obtain the relation between p(z)  and V(z): 

Relation (16) represents the special limiting case of the more general relation between p ( h )  
and V ( h ) ,  as was derived previously [19]. After integration of (16) we get the explicit form 
of the potential 

V ( z )  = i a , [ ; ( z  f. ~ L J { ) ~  - (21 f ZLZ/6)*z] + - +constant 

The '+' and '-' signs correspond to the metallic and localized regime respectively, and 
the constant term assures that V ( i l )  = 0, as follows from (16). 

(17) 
z d = 3. 

zfi 
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2.3. Inreracting potential 
In the derivation of the onoparticle potential we have assumed that the interacting potential 
u(zi,zj) is of the form (11). However, as will be discussed later, a description of the 
cubic systems in the critical regime requires the generalization of the interacting potential. 
Namely, it becomes clear that the second term in (1 1)  should also reflect the changes of 
the density p(z )  close to the critical point. As this term is negligibly small for z + 03, i t  
plays no role in the Q1D limit. However, the studies of the spectrum of the cubic samples 
requires a knowledge of the whole potential U. Wc propose i t  to be 

U ~ ( Z , , Z , ) =  - f l ~ g I c o s h z j  -coshz,l - ; l o g l V ( ~ i )  - V(zj)l. (18) 
A motivation for acceptance of (18) has been found in the original paper [20]. where U B R  

was derived analytically. Here, the quadratic terms z2 in the potential V(z) and in the 
interacting potential appear simultaneously (see equation (3.2) of 1201). We can rewrite 
U B R ( Z I ,  zj) in the form of ( 1 8 )  when V(z) a i2. It is therefore natural to assume the strong 
correlation between the form of the potential V(z) and of u(z i ,  z j ) .  We conjectured that this 
correlation also survives outside the metallic limit and in the general d-dimensional case. 

2.4. The temperature j3 

As will be shown below, the Hamiltonian H becomes size-independent for cubic samplcs 
above the critical point. To assure the true statistics of the LE, namely the system-size 
dependence of the variances of the LE, we have to redefine .@ in the localized limit. We 
propose its generalization to the form 

In what follows we apply the distribution P ( r )  (6) with the generalized Hamiltonian H 
and @ to QID and 3D systems and compare the predictions of the theory with results of 
the numerical studies of the Anderson model. 

3. Spectrum of quasi-one-dimensional systems 

In this section we use the distribution P ( z )  with the one-particle potential V(z) given by 
(17) in the derivation of the spectra of the LE in all three regimes. As L, >> L ,  the 
interacting potential u ( z , ,  z j )  reduces to f loglcoshz, - coshzjl. 

3.1. Metal 
In the metallic limit, z << 2LJC for W << W, and f ( x )  2/x. Taking 

x - t o  w<<w, (20) 
c 3  
80 

f ( x )  = ' x  

the potential V ( z )  reduces to the quadratic form 

and the spectrum of the LE becomes linear: 

(21) 

which reproduces correctly the numerical data [9].  Formula (20) also provides us with the 
coefficient of proportionality c for the scaling function f ( x ) .  
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3.2. Critical point 

At the critical point, il = (Lz /L )c1  and 6 -+ CO The potential has a simple form: 

and the spectrum of the LE is 

This agrees very well with the numerical data: in the Q1D Anderson model with 
width L = 18 we have found that i; follow the relation if = ?:[I + a(i  - 1)) with 
a = 1.685 c (112. 

3.3. Insulator 

In the insulating regime we have 

where 61 is given by the relation 

Owing to (3) 

61 = [ f ( x )  - 2x1 - O(1) for x >> 1. (27) 

For I D  systems, relation (26) has also been derived analytically [31]. The parameter 61 
depends weakly on the strength of the disorder. As i t  enters the theory via the lower bound of 
the integration in (16). it  has to be estimated numerically. Owing to (26). &(W = W,) = Cl, 
Above the critical point, grows slowly with disorder and achieves its limiting value 
61 c 3.9 for w 20. 

From potential (25) we found the spectrum of the L E  

where 

6 ,  = J;{ : ( i  - 1) + 6:. (29) 

We tested relations (28) and (29) numerically (see figure 2) and found that z; = aiL + 6i 
with slope oli almost independent of the index i. in agreement with (28). Both the small 
differences between ai and about 10% deviations of the numerical data for 8, are probably 
caused by the finite-size effect: the number of LE which follow (28), (29) is small for the 
finite system width, L,  achievable by computer. 

Formula (28) explains both the W and L independence of the differences [28]: 

L L 
-(zi - z1 )  M O(1) 
LZ 6 - >> 1. 
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10 1 4 a l  0 

2 4 .  6 ' 8  10 
I 

Figure 2. 6, against i for the QID system 
W = 25 (stars) and W = 32 (crosses) 
compared with the prediction of the formula 
(29) for SI = 3.9 (circles). Insen: the L 
dependence of the eighr smallest LE ( W  = 
32). Full lincs are linear fits z j  = OL t Si 
withslopesbetween l . l 08(z l )md l . l 7 ( z ~ ) .  
Only d m  for L > 14 have been used for the 
calculation of parameters U,, Si .  

4. Fluctuations of the LE 

Thanks to the statistical independence of z j  in the Q1D limit, we can estimate the variances 
var zi = (zf) - ( u ) ~  of the LE as 

1 a2H -- 
var zi - TAGS; 

It gives 

A numerical test of the relation (31) shows good agreement in the metallic and the 
critical regimes. In the insulating regime, agreement with numerical data is only qualitative 
(figure 3). It could be caused by inaccuracy of the numerical estimation of the variances, 
by finite-size effects, or by oversimplification of the relation (19). 

The SI dependence of var LI in the insulating regime 

var z1 = F: / (ZBst)  x .?I (33) 

underlines the role of the parameter &. We speculate that 61 represents the second 
independent parameter of the theory. This would mean that the one-parameter scaling 
fails above the critical point. A numerical test of such consideration is, however, very 
difficult. It requires an analysis of the 5 dependence of 81. We leave this question open, 
and simply note that the failure of the one-parameter scaling, has also been observed in 
(numerical and analytical) studies of the statistics of the LE in 1D chains 1311. 

Formulae (32) have an interesting application for the numerical analysis of the MIT. 
They enable us to estimate the length L, of the Q1D system which assures that the relative 
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sysrem (W = 6, L = 10, Lz = 812436). Theory 
prrdicu r; = 1 (32) ( h )  Relative variance J v a r f z ;  
ogainsl i a1 the critical point. Crosses are data from (32), 
circles represents dam from numerical simulations [ZS]. 
(c) I; = V X  z i  x &/zi % a functron of inde.x i in the 
localized regime in the Q l D  l u "  for 1V = 25 ( L  = 8, 

) IO and 12) and W = 32. Owing 10 (32). I ,  should be 
consl3nt and equal to I5.7. 

variance, $EFT,/zL, of the smallest LE ZI is smaller than the required accuracy E (~lsually 
of  order of 1%). We obtain 

For simplicity, we considered the limit L >> t ( W )  outside of the critical point in (34). 
Owing to (34), the calculation of the first LE at the critical point with accuracy 1% 

requires consideration of the Q1D system of length L ,  = 5000 x L. This agrees with 
results of  the numerical calculation 1281. 
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5. Generalization to dimension d > 2 

To study the general d-dimensional problem (d z 2). it is natural to conjecture the following 
generalization of relation (13): 

( z  + zLz/5)d-* w < w, 
p k )  c( k d  x z d - 2  W = W ,  d > 2  (35) 1 ( z  - 2 L z / 5 ) d - 2  w > w, 

with ad = i ( 2 L / L z ) d - ’ < ; d ;  < I  = CI(d) is again a universal constant. Its d dcpendence has 
been conjectured to be [32] 

<i(d) = <l(d = 3) x m. (36) 

Using relation ( 3 3 ,  the potential V ( z )  

and the spectrum of the LE have been found in the same way as in the previous section (in 
the Q1D limit). We briefly summarize the results. 

In the metallic regime, one recovers the quadratic potential and the linear spectrum of 
the L E  

z i = -  ~ L ~ ( ( ‘ ) d - ~ x 4 x ( ~ ) d x ( i - l + $ )  - 
5 L  

At the critical point, we have 

and the potential is 

z 

F o r d  = 4 we found numerically the spectrum 2: 
It agrees very well with (36), (39). 

$11 + 1.86(i - l ) ]  with 1‘1 =z 4.88 [321. 

Similarly, the spectrum in the localized limit is 

which is also in coincidence with the results of the numerical simulations presented in [32]. 
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6. Cubic samples 

In this section we find the spectra and the variances of the LE of cubic samples in all three 
regimes. We will explain the differences between the spectrum of QID and cubic samples, 
discussed in [6]. 

When comparing data for QID and 3D samples, we have to take into account that the 
first LE is not self-averaged for W < W, [6]. Therefore, the difference between the most 
probable value 2 and the mean value (z) is not negligible. As the distribution P(z1) is very 
close to the Wigner surmise in the metallic and the critical regime [6]. il is related with 
(zl) through the relation 

5 0.7978(~1) i3 = 1. ( 4 2 )  

We suppose that the form of the potential V(z) for the cubic systems ( L  = L , )  remains 
the same as was found in the QID limit. Although we cannot exclude the presence of 
terms - L / L ,  in V(z) (such terms are not observable in our analysis in section 4), they 
have not been found i n  the metallic regime [16, 20, 271 and there is no reason to expect 
their appearance in the critical regime. The exponential ‘tail’ in the density of the LE p(z). 
discussed in section 2.1. causes only corrections of order of exp(-L/t) and can also be 
neglected. 

6.1. Metal 

In the metallic limit, zi << I for i < N. The potential is quadratic ( Z l ) ,  and u(c,,  z,) = 
UBR(Z~,Z,). We find the most probable values of the LE i n  the same way as was done by 
Muttalib [27]: as zi < 1 for some first Lyapunov exponents with index i < N ,  we expand 
the ‘Hamiltonian’ (7) into a power series in zr for i < N, obtaining (for p = I )  

N I N  N 

i<j 2 i  2 ,  
‘FI = - C l o g  Iz,z - z;I - - c l o g z :  + K Cz’ + .  . . , (43) 

Inserting (43)  into (14) and solving the obtained system of equations by the Stiltjes 
method [14,27] we express 2, through zeros xN(i) of the Laguerre polynomial L,&) 
as 

It confirms the linearity of the spectrum of LE for large index i. Indeed, the zeros of 
the Laguerre polynomial can be expressed through the zeros j o ( i )  of the Bessel function 
Jo(x) as ~ ( i )  [4(N+ I/Z)]-’j$(i) + O(l/fl) (N >> I )  [29]. In the limit I’ >> 1 
j&) C z(i - 114); taking N = L / $ ,  we have 

which coincides with (22) if 

c: c.5 4x2. 



Relation (46) gives tl x 3.405, in agreement with numerical data. 
Owing to (44), the spectrum of the LE is not exactly linear. In particular, it gives 

&/it x 2.3 instead of 2. (This explains our previous numerical resulfs 161, where we found 
i2/it x 2.5 for L = 12 and 14.) This effect is much more pronounced i n  2D symplectic 
systems (d = 2, p = 4). Here, the above-described method now enables us to express 
ii through zeros of the Laguerre polynomial L$J’4’(x) and obtain 5/i1 x 4.05 unlike 
&/il = I + p = 5, predicted by relation (22) for Q1D geometry. We checked the last two 
relations numerically for the 2D Ando model [30] with disorder W = 2 (critical disorder 
W, = 5.75) and found Zz/Zt 3.81 for systems L x L with L < 100 [7] and i*/il x 4.94 
for the Q I D  system 20 x IO5. 

6.2. Critical point 

As it ,  i 2 .  . . - O(1) at the critical point, the Q I D  result (24) also provides us with a very 
good approximation of the spectrum of the LE for cubes. Nevertheless, there are small 
differences bctween the spectrum of Q1D and 3D systems [61. The most important one 
concerns the value of (zI). While (ZI) = f t  = 3.42 for Q I D  systems, (zI)  x 2.7, and 
it x 2.2 in the cubic samples. We show that this difference is determined by the second 
term of the interacting potential u p ,  which is not negligible for the cubic samples. 

The mean valuc of the kth LE ( Z K )  solves the system of equations 

(47) 

We solved system (47) with potential V ( z )  given by (23) and interacting potential (18). The 
calculated spectra are presented in figure 4. To emphasize the necessity of generalization 
of the interacting potential, we also present in figure 4 the solution of (47) with interacting 
potential KBR, 

a 
azi -(‘H - l o g z ~ )  = 0 i = I, 2. . . . . 

Flgure 4. The specmm of the LE at the critical 
point calculated from (47) with the interacting 
potential ul(& z,) for N = 40 (squares), 
60 (circles) and 70 (crosses) equations The 
full c w e  represents the result of numerical 
simulations 161. stars show the solution of (14) 
with the interacting potential U B R .  Insert the 
relative accuracy of the calculated data for both 
potentials. For U#, the accuracy is <5% for 

0 i S 12. For the higher LE, the agreement is 
worse (see text). 

As is seen from figure 4, system (47) reproduces correctly the beginning of the spectra 
(the relative difference between the solution of (47) and the numerical data is smaller than 
510 for i < 12, which is already comparable with the accuracy of the numerical data 
itself [6]). The disagreement obtained for the higher LE corresponds with an inapplicability 
of our formulae for the whole spectrum (see section 2). 



Phenomenological theory of the metal-insulator transition 8373 

6.3. lmulator 

The spectrum in the insulating regime can be studied in a similar way to that at the critical 
point, but instead of zt we consider the differences A, = z, - 2L/<(W). In the limit 
L /c  >> I, we have 

log I coshzi - coshzjl x 2L/< + log sinh ~ I 
and 

System (14) reduces then to the L-independent system of (non-linear) equations for Ai. 
Consequently, Ai achieve their limiting values, which do not depend on the disorder and 
on the system size in the limit L >-> t .  Due to the differences in system (14) for the QID 
and 3D systems, Ai should differ from S i ,  introduced in section 5.3. As it is rather difficult 
to find numerical data for Ai 151 we did not try to solve system (14) numerically. 

The same effect also influences the variances of the LE. The saddle-point method now 
gives us 

Unlike in the QID system, the matrix A is not diagonal: 

The off-diagonal terms provide us with corrections of order O(L/L,) and O(exp[-L,/L]) to 
the first one, as can be seen from equations (18). (48) and (49). They are negligible in QID, 
but not in the 3D case. This fact probably explains the geometry dependence of the variance 
of the logarithm of the conductance logg in the localized regime: varlogg = c(logg) with 
c ~ ; j  1 for cubes, and c % 1.29 for the QID system ( W  = 25). This effect is even more 
pronounced in 2D systems [16]. 

7. Conclusion 

We found that the density of Lyapunov exponents p(z) changes its form when the system 
undergoes a metal-insulator transition. This enables us to generalize the distribution P ( z )  of 
the Lyapunov exponents, proposed on the basis of random mamx theory, to the description 
of the metal-insulator transition in disordered systems. The distribution P ( z )  proposed 
previously for the metallic regime has been generalized in three points. (i) Unlike in 
lhe metallic regime, the one-particle potential V(z) becomes dimension-dependent. (ii) The 
interacting potential UBR(Z~,  zj) derived by BeenaWter and Rajaei should be generalized (18). 
(iii) To describe the statistics of the LE in the localized regime, we generalized the probability 
distribution P ( z )  by introducing the L-dependent ‘temperature’ (19). 
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We applied the distribution P ( z )  to QID and 3 0  samples and found that the predictions 
of the model agree very well with results of numerical simulations, particularly at the critical 
point and in the metallic limit. Disagreements. found in the localized regime, are probably 
caused by finite-size effects (numerical data have been collected for too small systems). 
Using the distribution P ( z ) ,  we recovered the spectrum of the LE in all three regimes in 
the QID limit, and explained the dependence of the spectrum of the LE on the geomety 
of the sample, discussed in [61. 

The presented construction of P ( z )  differs from that chosen by Clien and co- 
workers (331, who estimated the form of the one-particle potential V ( z )  in the localized 
regime from the analogy with the distribution Pl ( r )  of the LE of the one-dimensional 
system, In our opinion, however, this correspondence is much more difficult to establish. 
Numerical data [5] show that the analogy between the ID and higher-dimensional systems 
lies in the similar form of the distribution P l ( z )  and of the distribution P(z.1) of the first LE 
of the higher-dimensional systems. This last is given by P ( z , )  = J d z z , ,  . d z ~  exp(-flX). 
Thus P(zl)  is determined not only by V(z). but also by the interacting potential U, and 
differs from exp[-V(zl)l. 

Our results underline the important role of the finite-size scaling theory of MacKinnon 
and Kramer [SI in the description of the MIT: in our model, the scaling parameter [ ( W )  
determines not only the disorder dependence of the smallest LE 21, but rather the whole 
distribution P ( z )  of Lyapunov exponents. On the other hand, in the localized regime we 
found that both the spectrum and the variance var ZI of the first LE (and so also of the 
conductance), depend on two parameters: F and 61. This could explain the failure of the 
one-parameter scaling discussed previously [3 I]. As our generalization of the 'temperature' 
6 is not unambiguous, we cannot discuss this problem in detail within the framework of 
the present paper. 

The generalization of P f z )  to any dimension d > 2 is straightforward. We presented 
the formulae for the spectrum of the 4D Anderson model, which has been confirmed by 
numerical simulations. 

The generalization of the formulae (35). (37) to the 2D systems is of particular interest, 
In the first approximation. the statistics of the LE in the metallic limit and at the critical 
point could be described starting with the quadratic potential V(z). as was discussed in 
section 6.1 for the metallic limit. However, we have not succeeded in finding a consistent 
expression for the density of the LE in 2D. The existence of the log L corrections to the 
conductance I341 indicates that both p ( z )  and the potential contain log-dependent terms. 
We believe that the generalization of the present treatment will also explain the differences 
in the statistics of logg in the 2D system [16]. 

The distribution P ( z )  has been obtained phenomenologically, using the numerical data 
for the spectrum of Lyapunov exponents. It explains very well the spectrum and the 
statistics of the LE. It is worth mentioning that no additional constants are necessary to 
fit the numerical data for d > 2. We conclude, therefore, that P(z )  could be used as at 
least the first approximation of the exact formulae. It could be confirmed by numerical 
studies of other models that exhibit a MIT (the random wire model [4], for instance), or 
by microscopic theory, starting 'from first principles' as in [23,25,35,36]. We believe that 
such a theory exists, and that further studies in this field will confirm our conjectures. 
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